3.9.53 \(\int \sec (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx\) [853]

3.9.53.1 Optimal result
3.9.53.2 Mathematica [A] (verified)
3.9.53.3 Rubi [A] (verified)
3.9.53.4 Maple [A] (verified)
3.9.53.5 Fricas [A] (verification not implemented)
3.9.53.6 Sympy [F(-1)]
3.9.53.7 Maxima [A] (verification not implemented)
3.9.53.8 Giac [A] (verification not implemented)
3.9.53.9 Mupad [B] (verification not implemented)

3.9.53.1 Optimal result

Integrand size = 25, antiderivative size = 105 \[ \int \sec (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=-\frac {11 a \log (1-\sin (c+d x))}{16 d}-\frac {5 a \log (1+\sin (c+d x))}{16 d}+\frac {a^3}{8 d (a-a \sin (c+d x))^2}-\frac {3 a^2}{4 d (a-a \sin (c+d x))}-\frac {a^2}{8 d (a+a \sin (c+d x))} \]

output
-11/16*a*ln(1-sin(d*x+c))/d-5/16*a*ln(1+sin(d*x+c))/d+1/8*a^3/d/(a-a*sin(d 
*x+c))^2-3/4*a^2/d/(a-a*sin(d*x+c))-1/8*a^2/d/(a+a*sin(d*x+c))
 
3.9.53.2 Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.10 \[ \int \sec (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=\frac {3 a \text {arctanh}(\sin (c+d x))}{8 d}+\frac {3 a \sec (c+d x) \tan (c+d x)}{8 d}-\frac {3 a \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {a \sec (c+d x) \tan ^3(c+d x)}{d}-\frac {a \left (4 \log (\cos (c+d x))+2 \tan ^2(c+d x)-\tan ^4(c+d x)\right )}{4 d} \]

input
Integrate[Sec[c + d*x]*(a + a*Sin[c + d*x])*Tan[c + d*x]^4,x]
 
output
(3*a*ArcTanh[Sin[c + d*x]])/(8*d) + (3*a*Sec[c + d*x]*Tan[c + d*x])/(8*d) 
- (3*a*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + (a*Sec[c + d*x]*Tan[c + d*x]^3 
)/d - (a*(4*Log[Cos[c + d*x]] + 2*Tan[c + d*x]^2 - Tan[c + d*x]^4))/(4*d)
 
3.9.53.3 Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.88, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 3315, 27, 99, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tan ^4(c+d x) \sec (c+d x) (a \sin (c+d x)+a) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (c+d x)^4 (a \sin (c+d x)+a)}{\cos (c+d x)^5}dx\)

\(\Big \downarrow \) 3315

\(\displaystyle \frac {a^5 \int \frac {\sin ^4(c+d x)}{(a-a \sin (c+d x))^3 (\sin (c+d x) a+a)^2}d(a \sin (c+d x))}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {a \int \frac {a^4 \sin ^4(c+d x)}{(a-a \sin (c+d x))^3 (\sin (c+d x) a+a)^2}d(a \sin (c+d x))}{d}\)

\(\Big \downarrow \) 99

\(\displaystyle \frac {a \int \left (\frac {a^2}{4 (a-a \sin (c+d x))^3}-\frac {3 a}{4 (a-a \sin (c+d x))^2}+\frac {a}{8 (\sin (c+d x) a+a)^2}+\frac {11}{16 (a-a \sin (c+d x))}-\frac {5}{16 (\sin (c+d x) a+a)}\right )d(a \sin (c+d x))}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {a \left (\frac {a^2}{8 (a-a \sin (c+d x))^2}-\frac {3 a}{4 (a-a \sin (c+d x))}-\frac {a}{8 (a \sin (c+d x)+a)}-\frac {11}{16} \log (a-a \sin (c+d x))-\frac {5}{16} \log (a \sin (c+d x)+a)\right )}{d}\)

input
Int[Sec[c + d*x]*(a + a*Sin[c + d*x])*Tan[c + d*x]^4,x]
 
output
(a*((-11*Log[a - a*Sin[c + d*x]])/16 - (5*Log[a + a*Sin[c + d*x]])/16 + a^ 
2/(8*(a - a*Sin[c + d*x])^2) - (3*a)/(4*(a - a*Sin[c + d*x])) - a/(8*(a + 
a*Sin[c + d*x]))))/d
 

3.9.53.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 99
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], 
 x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] && (IntegerQ[p] | 
| (GtQ[m, 0] && GeQ[n, -1]))
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3315
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(b^p* 
f)   Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*x)^n, 
 x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && Intege 
rQ[(p - 1)/2] && EqQ[a^2 - b^2, 0]
 
3.9.53.4 Maple [A] (verified)

Time = 0.35 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.06

method result size
derivativedivides \(\frac {a \left (\frac {\left (\tan ^{4}\left (d x +c \right )\right )}{4}-\frac {\left (\tan ^{2}\left (d x +c \right )\right )}{2}-\ln \left (\cos \left (d x +c \right )\right )\right )+a \left (\frac {\sin ^{5}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}-\frac {\sin ^{5}\left (d x +c \right )}{8 \cos \left (d x +c \right )^{2}}-\frac {\left (\sin ^{3}\left (d x +c \right )\right )}{8}-\frac {3 \sin \left (d x +c \right )}{8}+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}\) \(111\)
default \(\frac {a \left (\frac {\left (\tan ^{4}\left (d x +c \right )\right )}{4}-\frac {\left (\tan ^{2}\left (d x +c \right )\right )}{2}-\ln \left (\cos \left (d x +c \right )\right )\right )+a \left (\frac {\sin ^{5}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}-\frac {\sin ^{5}\left (d x +c \right )}{8 \cos \left (d x +c \right )^{2}}-\frac {\left (\sin ^{3}\left (d x +c \right )\right )}{8}-\frac {3 \sin \left (d x +c \right )}{8}+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}\) \(111\)
risch \(i a x +\frac {2 i a c}{d}+\frac {i a \left (6 i {\mathrm e}^{4 i \left (d x +c \right )}+5 \,{\mathrm e}^{5 i \left (d x +c \right )}-6 i {\mathrm e}^{2 i \left (d x +c \right )}+14 \,{\mathrm e}^{3 i \left (d x +c \right )}+5 \,{\mathrm e}^{i \left (d x +c \right )}\right )}{4 \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )^{2} \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{4} d}-\frac {11 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{8 d}-\frac {5 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{8 d}\) \(146\)
parallelrisch \(\frac {2 \left (-\frac {1}{8}+\left (-\frac {\sin \left (3 d x +3 c \right )}{2}-\frac {\sin \left (d x +c \right )}{2}+\cos \left (2 d x +2 c \right )+1\right ) \ln \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {11 \left (-1-\cos \left (2 d x +2 c \right )+\frac {\sin \left (d x +c \right )}{2}+\frac {\sin \left (3 d x +3 c \right )}{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8}+\frac {5 \left (-1-\cos \left (2 d x +2 c \right )+\frac {\sin \left (d x +c \right )}{2}+\frac {\sin \left (3 d x +3 c \right )}{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8}+\frac {\cos \left (2 d x +2 c \right )}{8}+\frac {3 \sin \left (d x +c \right )}{8}-\frac {3 \sin \left (3 d x +3 c \right )}{8}\right ) a}{d \left (2-\sin \left (3 d x +3 c \right )-\sin \left (d x +c \right )+2 \cos \left (2 d x +2 c \right )\right )}\) \(208\)
norman \(\frac {-\frac {3 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d}+\frac {2 a \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {11 a \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}+\frac {2 a \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {3 a \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}+\frac {6 a \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {6 a \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {2 a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {2 a \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+\frac {a \ln \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {11 a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 d}-\frac {5 a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 d}\) \(240\)

input
int(sec(d*x+c)^5*sin(d*x+c)^4*(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)
 
output
1/d*(a*(1/4*tan(d*x+c)^4-1/2*tan(d*x+c)^2-ln(cos(d*x+c)))+a*(1/4*sin(d*x+c 
)^5/cos(d*x+c)^4-1/8*sin(d*x+c)^5/cos(d*x+c)^2-1/8*sin(d*x+c)^3-3/8*sin(d* 
x+c)+3/8*ln(sec(d*x+c)+tan(d*x+c))))
 
3.9.53.5 Fricas [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.30 \[ \int \sec (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=\frac {10 \, a \cos \left (d x + c\right )^{2} - 5 \, {\left (a \cos \left (d x + c\right )^{2} \sin \left (d x + c\right ) - a \cos \left (d x + c\right )^{2}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 11 \, {\left (a \cos \left (d x + c\right )^{2} \sin \left (d x + c\right ) - a \cos \left (d x + c\right )^{2}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 6 \, a \sin \left (d x + c\right ) + 2 \, a}{16 \, {\left (d \cos \left (d x + c\right )^{2} \sin \left (d x + c\right ) - d \cos \left (d x + c\right )^{2}\right )}} \]

input
integrate(sec(d*x+c)^5*sin(d*x+c)^4*(a+a*sin(d*x+c)),x, algorithm="fricas" 
)
 
output
1/16*(10*a*cos(d*x + c)^2 - 5*(a*cos(d*x + c)^2*sin(d*x + c) - a*cos(d*x + 
 c)^2)*log(sin(d*x + c) + 1) - 11*(a*cos(d*x + c)^2*sin(d*x + c) - a*cos(d 
*x + c)^2)*log(-sin(d*x + c) + 1) - 6*a*sin(d*x + c) + 2*a)/(d*cos(d*x + c 
)^2*sin(d*x + c) - d*cos(d*x + c)^2)
 
3.9.53.6 Sympy [F(-1)]

Timed out. \[ \int \sec (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)**5*sin(d*x+c)**4*(a+a*sin(d*x+c)),x)
 
output
Timed out
 
3.9.53.7 Maxima [A] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.82 \[ \int \sec (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=-\frac {5 \, a \log \left (\sin \left (d x + c\right ) + 1\right ) + 11 \, a \log \left (\sin \left (d x + c\right ) - 1\right ) - \frac {2 \, {\left (5 \, a \sin \left (d x + c\right )^{2} + 3 \, a \sin \left (d x + c\right ) - 6 \, a\right )}}{\sin \left (d x + c\right )^{3} - \sin \left (d x + c\right )^{2} - \sin \left (d x + c\right ) + 1}}{16 \, d} \]

input
integrate(sec(d*x+c)^5*sin(d*x+c)^4*(a+a*sin(d*x+c)),x, algorithm="maxima" 
)
 
output
-1/16*(5*a*log(sin(d*x + c) + 1) + 11*a*log(sin(d*x + c) - 1) - 2*(5*a*sin 
(d*x + c)^2 + 3*a*sin(d*x + c) - 6*a)/(sin(d*x + c)^3 - sin(d*x + c)^2 - s 
in(d*x + c) + 1))/d
 
3.9.53.8 Giac [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.89 \[ \int \sec (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=-\frac {10 \, a \log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right ) + 22 \, a \log \left ({\left | \sin \left (d x + c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (5 \, a \sin \left (d x + c\right ) + 3 \, a\right )}}{\sin \left (d x + c\right ) + 1} - \frac {33 \, a \sin \left (d x + c\right )^{2} - 42 \, a \sin \left (d x + c\right ) + 13 \, a}{{\left (\sin \left (d x + c\right ) - 1\right )}^{2}}}{32 \, d} \]

input
integrate(sec(d*x+c)^5*sin(d*x+c)^4*(a+a*sin(d*x+c)),x, algorithm="giac")
 
output
-1/32*(10*a*log(abs(sin(d*x + c) + 1)) + 22*a*log(abs(sin(d*x + c) - 1)) - 
 2*(5*a*sin(d*x + c) + 3*a)/(sin(d*x + c) + 1) - (33*a*sin(d*x + c)^2 - 42 
*a*sin(d*x + c) + 13*a)/(sin(d*x + c) - 1)^2)/d
 
3.9.53.9 Mupad [B] (verification not implemented)

Time = 10.12 (sec) , antiderivative size = 205, normalized size of antiderivative = 1.95 \[ \int \sec (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=\frac {a\,\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}{d}-\frac {5\,a\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )}{8\,d}-\frac {11\,a\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )}{8\,d}+\frac {\frac {3\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{4}+\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{2}-\frac {9\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{2}+\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{2}+\frac {3\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4}}{d\,\left (-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )} \]

input
int((sin(c + d*x)^4*(a + a*sin(c + d*x)))/cos(c + d*x)^5,x)
 
output
(a*log(tan(c/2 + (d*x)/2)^2 + 1))/d - (5*a*log(tan(c/2 + (d*x)/2) + 1))/(8 
*d) - (11*a*log(tan(c/2 + (d*x)/2) - 1))/(8*d) + ((3*a*tan(c/2 + (d*x)/2)) 
/4 + (a*tan(c/2 + (d*x)/2)^2)/2 - (9*a*tan(c/2 + (d*x)/2)^3)/2 + (a*tan(c/ 
2 + (d*x)/2)^4)/2 + (3*a*tan(c/2 + (d*x)/2)^5)/4)/(d*(2*tan(c/2 + (d*x)/2) 
 + tan(c/2 + (d*x)/2)^2 - 4*tan(c/2 + (d*x)/2)^3 + tan(c/2 + (d*x)/2)^4 + 
2*tan(c/2 + (d*x)/2)^5 - tan(c/2 + (d*x)/2)^6 - 1))